Toán

Cách tính và tìm ma trận nghịch đảo 2×2, 3×3, 4×4 chính xác

Cách tính bằng tay và máy tính

Ma trận nghịch đảo là một loại ma trận đặc biệt được sử dụng trong toán học và các lĩnh vực liên quan. Nó được tính toán từ một ma trận ban đầu và có thể được sử dụng để giải các phương trình hệ ma trận hoặc để tính toán các khảo sát của ma trận ban đầu. Cùng We Escape tìm hiểu xem ma trận nghịch đảo là gì? công thức tìm ma trận nghịch đảo? Bài tập thực hành phần phụ đại số mới nhất bên dưới.

Cách tính và tìm ma trận nghịch đảo 2x2, 3x3, 4x4 chính xác
Cách tính và tìm ma trận nghịch đảo 2×2, 3×3, 4×4 chính xác

Ma trận nghịch đảo là gì?


Ma trận nghịch đảo là gì? : Cho ma trận A vuông cấp n. Ta nói ma trận A là ma trận khả nghịch nếu tồn tại ma trận B sao cho AB = BA = En . Khi đó, B gọi là ma trận nghịch đảo của ma trận A, kí hiệu là A-1.

Ma trận không có dấu phân số nên bạn cần sử dụng ma trận nghịch đảo để đơn giản hóa phép toán phức tạp này. Có hai cách tính ma trận nghịch đảo là tính tay và dùng máy tính giúp cho kết quả chính xác hơn.

Ma trận nghịch đảo là gì
Ma trận nghịch đảo là gì

Tính chất ma trận nghịch đảo


Điều kiện cần và đủ để ma trận A vuông cấp n khả nghịch là định thức của A là phần tử khả nghịch trong vành V.

Nếu A là ma trận trên một trường F thì A là khả nghịch khi và chỉ khi định thức của nó khác 0.

Ma trận đơn vị là ma trận khả nghịch.

Nếu A, B là các ma trận khả nghịch thì AB khả nghịch và (AB)-1 = B-1A-1

Tập hợp các ma trận vuông cấp n trên K khả nghịch, được ký hiệu là GLn(K).

Cách tính ma trận nghịch đảo


Dưới đây là hướng dẫn cách tính ma trận nghịch đảo mới nhất hãy tham khảo nhé

Ma trận nghịch đảo 2×2


Cách tính ma trận nghịch đảo 2×2 theo phương pháp sử dụng ma trận phụ hợp (phép khử Gauss-Jordan) thực hiện như sau:

Ma trận nghịch đảo 2x2

Ví dụ:

Ma trận nghịch đảo 2x2

Ma trận nghịch đảo 3×3


Ma trận nghịch đảo 3x3

Phương pháp tìm ma trận nghịch đảo bằng cách tạo ma trận bổ sung:

  • Bước 1: Kiểm tra định thức của ma trận, ký hiệu là det(A).
    Nếu det(A)=0 thì A không có ma trận nghịch đảo A-1Nếu det(A)≠0 thì A có ma trận A-1, chuyển sang bước 2
    Bước 2: Chuyển vị ma trận gốc tức là đổi vị trí của phần tử thứ (i,j) và chỗ của phần tử (j,i) với nhau.
  • Bước 3: Tìm định thức của từng ma trận con 2×2 liên kết với ma trận chuyển vị 3×3 mới.
  • Bước 4: Tạo ma trận các phần phụ đại số, ký hiệu là Adj(M).Ma trận nghịch đảo 3x3
  • Bước 5: Thực hiện phép chia của toàn bộ các phần tử của ma trận bổ sung với định thức của ma trận là det(M).

Phương pháp tìm ma trận nghịch đảo bằng cách giảm hàng tuyến tính

  • Bước 1: Thực hiện thêm ma trận đơn vị vào trong ma trận gốc
  • Bước 2: Tiến hành phép giảm hàng tuyến tính và thực hiện đến khi ma trận đơn vị được hình thành
  • Bước 3: Viết lại ma trận nghịch đảo cho chuẩn xác

Ma trận nghịch đảo 4×4


a) Đối với ma trận 4×4 thì cách tính được áp dụng phổ biến hơn cả là phương pháp dùng các phép biến đổi sơ cấp

Cụ thể như sau:

Nếu det(A)≠0 ta tính A-1 bằng các rút gọn ma trận -> < In : A-1> với I là ma trận đơn vị.

Ma trận nghịch đảo 4x4

b) Dùng định lý Haminton-Cayley

+ Đa thức đặc trưng của ma trận Anxn= là: f (x) = det(xI – A)

Tổng quát: Tính đa thức đặc trưng của ma trận A là f(x) bằng công thức Bocher như sau:

Đặt Sp= tr(Ap) với tr(Ap) = tổng phần tử trên đường chéo chính của Ap

Ma trận nghịch đảo 4x4

Trường hợp riêng

Ma trận nghịch đảo 4x4

c) Định lý Cayley-Hamilton

Nếu f(x) là đa thức đặc trưng của ma trận vuông A thì f(A)=0

Giả sử cho A khả đảo (det(A)≠0) có đa thức đặc trưng f(x)= xn + a1xn-1 + a2xn-2 +…+ an-1x + an thì An + a1An-1 + a2An-2 +…+ an-1A + an= O và an=(-1)n det(A) ≠0, ta nhân 2 vế cho A-1 được:

Ma trận nghịch đảo 4x4

Cách tìm ma trận nghịch đảo bằng máy tính Fx570ES Plus


Cách tìm ma trận nghịch đảo bằng cách dùng máy tính bỏ túi được thực hiện theo quy trình nhất định. Các bước thực hiện chung cụ thể:

  • Chọn máy tính có hỗ trợ chức năng giải ma trận
  • Tiến hành nhập ma trận vào trong máy
  • Chọn thực đơn con và tên cho ma trận
  • Nhập kích thước và từng phần tử của ma trận
  • Thoát chức năng ma trận
  • Tìm ma trận nghịch đảo bằng cách dùng phím nghịch đảo của máy
  • Viết lại ma trận nghịch đảo chuẩn xác

Cách tìm ma trận nghịch đảo bằng máy tính Fx570ES Plus Cách tìm ma trận nghịch đảo bằng máy tính Fx570ES Plus

Bài tập ma trận nghịch đảo


Bài 1: Cho ma trận A sau và tìm ma trận nghịch đảo của A

Bài 1: Cho ma trận A sau và tìm ma trận nghịch đảo của A

Giải

detA=(1.3.2+1.2.3+.1.2.3)-(3.3.3+1.1.1+2.2.2)=18-34 = -18 ≠0

Viết công thức và thực hiện đan dấu như hình dưới:

Bài 1: Cho ma trận A sau và tìm ma trận nghịch đảo của A

Đối với phần tử a11 ta loại bỏ hàng 1 và cột 1 của ma trận A

Bài 1: Cho ma trận A sau và tìm ma trận nghịch đảo của A

Sau khi loại bỏ ta được như hình dưới

Bài 1: Cho ma trận A sau và tìm ma trận nghịch đảo của A

Đối với a12 thì loại bỏ hàng 1 cột 2

Bài 1: Cho ma trận A sau và tìm ma trận nghịch đảo của A

Tương tự đối với các phần tử còn lại ta được:

Bài 1: Cho ma trận A sau và tìm ma trận nghịch đảo của A

Tính định thức ta được:

Bài 1: Cho ma trận A sau và tìm ma trận nghịch đảo của A

Chuyển vị và ta được kết quả cuối cùng:

Bài 1: Cho ma trận A sau và tìm ma trận nghịch đảo của A

Bài 2: Tìm X

Tìm X

Giải

Ta có: A.X=B ⇒ X=A-1.B

det A = (1.-1.0+0.5.3+-2.2.1)-(2.-1.3+1.1.5+0.0.-2)= -3≠0

Tìm X

Tìm X

Tìm X

Tìm X

Tìm X


Chúng tôi có tham khảo nguồn tại:

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button